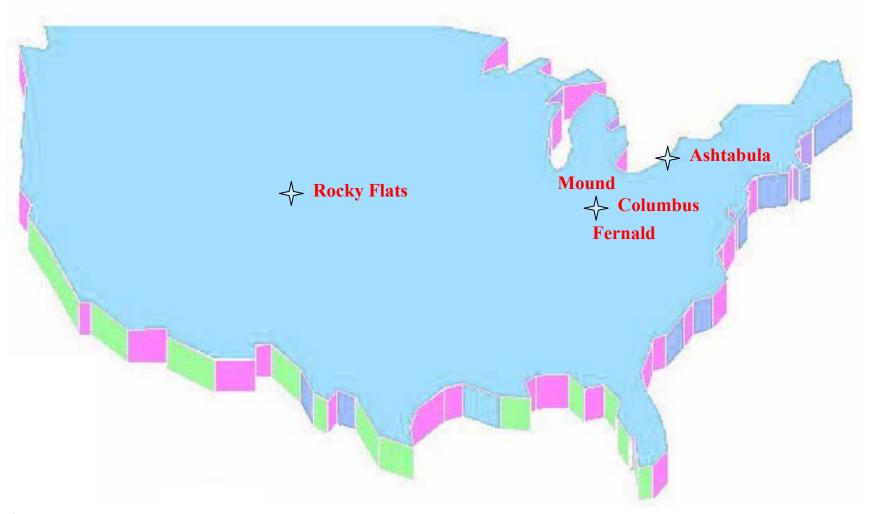
EM and a Changing Environment

Future Challenges for Deactivation and Decommissioning

Robert Bedick

Product Manager Salt Lake City, Utah March 5, 2002



If We Only Had a Crystal Ball!

Supporting Closure Sites

Rocky Flats **Unique Challenges - Unique Solutions**

Recent Accomplishments at Rocky Flats

- Effective/Safe Size Reduction and Packaging of Equipment
 - Staged improvements of size reduction systems to reduce worker injury and rad exposure ~ savings \$ 9 million
- Decontamination and Measurement Systems for Surface Contaminated Objects
 - -3-stage decon, high-rad instrumentation, and packaging technologies have maximized disposal as SCO waste eliminating costly size reduction ~ savings \$ 106 million
- Certification System for Larger TRU Waste Container
 - "SuperHENC" neutron assay system to certify Standard
 Waste Boxes for disposal at WIPP ~ savings \$ 141 million

Addressing Rocky's #1 Challenge - Beryllium

- Supporting deployment of instrumentation for real-time air monitoring and in-building readings of swipes and filters for beryllium
 - Contract to Amzil, Inc for a beryllium air monitor
 - Contract SEA to test a real-time monitor that utilizes microwave plasma and spectrometry to analyze swipes
 - Assess new LANL real-time technique for detection of surface contamination (support for preparation, testing, calibration and validation of method)

Future Challenges at Rocky Flats

- Characterization of plutonium under paint
- Vacuum removal of raschig rings
- Size reduction of thick items
- Sludge removal/decontamination
- Duct Compaction
- Remote in-situ size reduction
- Structural foam for shipping
- Remote decontamination of ducts
- Characterization for SCO w/ external measurements
- Equipment encapsulation

Recent Accomplishments at Mound

- Completed Tritium Facility LSDDP
- Improved non-invasive and invasive techniques for characterization of the "Old Cave"
- Initiated Mound LTS Initiative

Solving High-Priority Needs at Mound has Impact Across the Complex

- Nochar PetroBond[®] oil solidification polymer cost-effectively solidifies tritium-contaminated vacuum pump oils
 - deployments at: Mound, Ashtabula,
 Columbus, Rocky Flats, LANL, Sandia,
 WTC ground zero & Whiteshell Laboratory,
 Atomic Energy of Canada
 - planned deployments in Russia & Romania
- SRS evaluating Nochar for treatment of 37,000 gallons of PUREX waste
 - potential savings \$91 million

Future Challenges at Mound

- Monitoring for Metal Tritides
- Decontamination and Size Reduction Techniques for Tritiated Gloveboxes
- Control of Loose Surface Contamination
- Dust and Surface Contamination Control
- Tank Sludge Removal/Solidification
- Robotic Characterization of Stacks

Improved Measurement and Monitoring Systems Helping Fernald Put Safety First

Prismless Total Survey Station

- Leica system now used daily at Fernald for safe, cost-effective surveying
- -reduces labor & PPE requirements
- -estimated savings ~\$370,500

Wireless Physiological Monitoring

- Siemens/Framatome system will measure and collect vital sign information for multiple workers simultaneously
- -estimated savings ~\$127,300

Wireless Integrated Radon Monitor

- deployment of Campbell Scientific unit in November 2001
- additional units purchased; estimated savings ~\$775,000

Reducing Waste Volumes & Solving High-Priority Needs at Fernald

Universal Demolition Processor

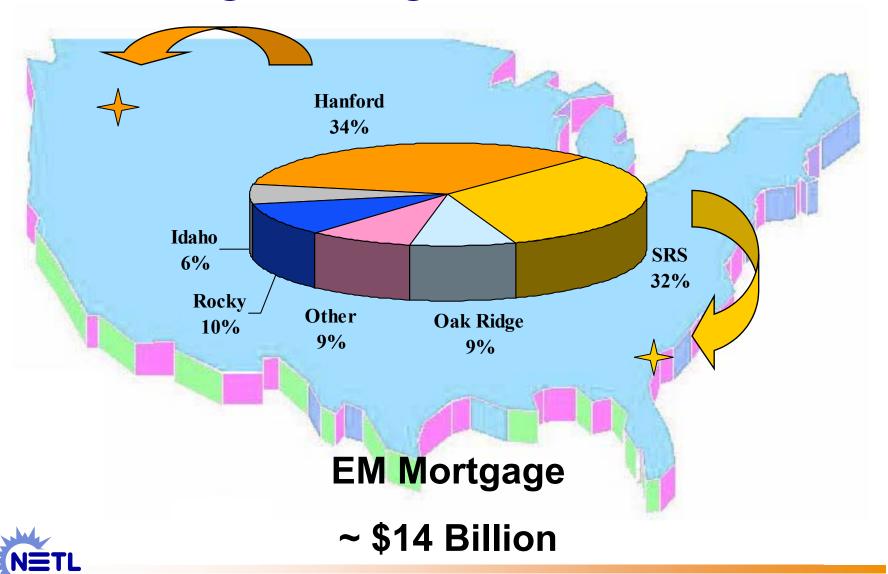
 15,000 cubic yards of aggregate needed per year to support transportation infrastructure

recycling concrete saves money & reduces waste

 completed processing of 16 concrete pads & structures containing approximately 2,300 cubic yards of concrete

 locations targeted for concrete processing include 10A-Precipitator Pad (north and south), 10C Pad, Clearwell, and 12A Pad; containing over 2,200 cy of concrete

estimated LCC savings \$11 million



Future Challenges at Fernald

- Air Monitoring for Thorium Dose
- Enhanced Real-Time Personnel Monitoring for Radon
- Identification of residual liquid in piping, equipment and tanks
- Improved method of cutting stainless steel equipment and tanks

High Risk/High Cost Baselines

Seeking Alternatives for High Risk/High Cost Baselines

- Plutonium Processing Facilities
- Hot Cells
- Gaseous Diffusion Plants
- Chemical Processing Facilities "Canyons"

Plutonium Processing Facilities

Problem

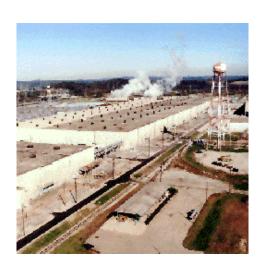
- kilogram quantities of Pu held up in some process equipment and ducts needs to be safely removed before further D&D can take place
- contaminated structures, thousands of gloveboxes and miles of piping and duct systems require decon to below TRU

- Hanford's 200 Area including 233-S and the PFP complex
- Rocky Flats Pu processing facilities (e.g., Building 776/777)
- Other major sites include LANL and SRS

Hot Cell Facilities

Problem

- typically have very high radiation fields (tens to hundreds of R/hr)
- storehouses for other highly contaminated equipment & debris
- congested, limited access and extremely dangerous environments



- Hanford's 300 Area (e.g., 324 & 327 Bldgs)
- West Valley Head End Cells
- Battelle West Jefferson JN-1 building hot cells
- Hot cells also at LANL, INEEL and most national labs

Gaseous Diffusion Plants

Problem

- the majority of existing legacy material is inventoried at the gaseous diffusion plants
- future D&D activities at the GDPs will generate waste materials that dwarf the existing scrap piles.

- Oak Ridge K-25 & K-27 D&D
- June 2001 Portsmouth enrichment operations placed in cold standby; D&D of some excess facilities will be accelerated
- D&D of the Paducah GDP is not anticipated to begin until near FY2020.

Reprocessing Facilities "Canyons"

Problem

- massive, highly contaminated facilities with large volumes of contaminated processing equipment
- aging structures having undergone varying degrees of deactivation
- SRS canyons still operating, end states undetermined
- until deactivation and final disposition occurs, extensive and costly S&M is required

- Hanford's 200 Area canyons (e.g., U, T & B Plants)
- SRS; F and H facilities
- Idaho HPP/CPP-640, West Valley CPC, SPRU

Developing Core Technologies

 In 2001, the National Research Council identified four areas for D&D research investments:

- 1) characterization of contaminated materials
- 2) decontamination of equipment and facilities
- 3) remote intelligent systems to improve worker safety
- 4) end state definition for facility D&D

NETL Applied Research Response

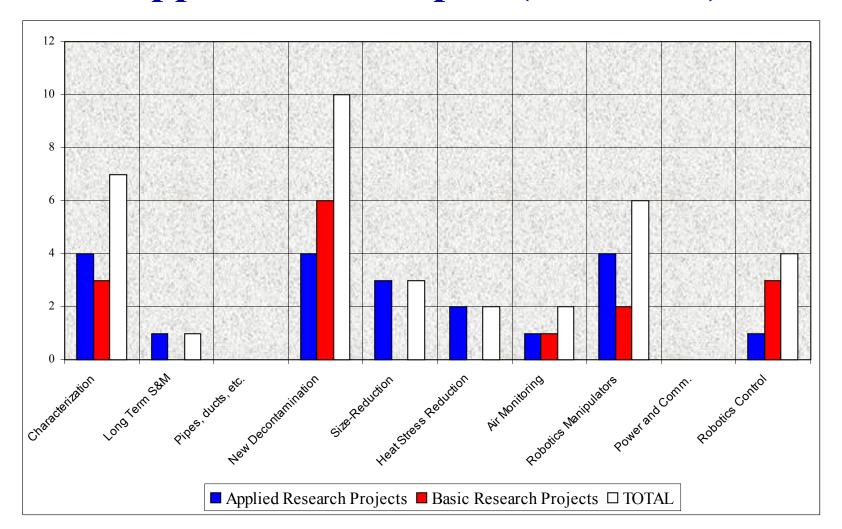
• NETL has issued an applied research call that included the first three topic areas identified by NRC

 Proposals solicited from industry, universities and national labs

• NETL call was much broader; ten topic areas were included within the applied research solicitation

Applied R&D Topic Areas

Topic Area	Applied Research Projects	Basic Research Projects
Improvements to	4	3
Characterization Technology		
New Systems for Long Term	1	0
Surveillance and Maintenance		
New Characterization	0	0
Techniques for Pipes, Ducts,		
Tanks, etc.		
Next Generation	4	6
Decontamination Technology		
for Metals & Concrete		
Improved Size-Reduction and	3	0
Demolition Technologies		



Applied R&D Topic Areas (continued)

Topic Area	Applied Research Projects	Basic Research Projects
Technologies for Worker Heat	2	0
Stress Reduction		
Improved Air Monitoring	1	1
Technology and		
Contamination Control		
Advanced Manipulators and	4	2
End Effectors		
Tetherless Power and	0	0
Communications Systems		
Sensor- based Manipulator	1	3
Control Systems		

Applied R&D Topics (continued)

Back to the Future

